Ultrahigh Resolution ²⁹Si N.M.R. Spectroscopy: Natural Abundance Studies of Oxygen-18/16 Isotope Effects on ²⁹Si Nuclear Shielding

Eriks Kupče, Edvards Liepiņš, leva Zicmane, and Edmunds Lukevics*

Institute of Organic Synthesis, Latvian SSR Academy of Sciences, Riga 226006, U.S.S.R.

^{18/16}O Isotope effects on ²⁹Si chemical shifts have been measured in various organosilanes for the first time; their magnitude depends on the nature of the Si–O chemical bond, particularly, on the extent of d_{π} – p_{π} conjugation.

^{18/16}O Isotope effects on ¹³C,^{1 15}N,² and ³¹P³ chemical shifts (1Δ) have been widely exploited in biosynthetic investigations⁴ and studies of reaction mechanisms,⁵ because they allow the determination of the site and degree of isotopic substitution in the molecule. On the other hand these effects are sensitive to various structural parameters, such as bond length, bond order, and stretching force constants, which makes them useful for investigations of the electronic structure of molecules.⁶ Although ^{18/16}O isotope effects on the ²⁹Si chemical shift can be used in a similar manner, their values had not been determined until recently. This can be explained in part by the necessity for the compounds to be isotopically enriched in ¹⁸O, but the situation has now improved. Recently, we have shown⁷ that under ultrahigh resolution conditions ^{18/16}O isotope effects can be measured in ²⁹Si n.m.r. spectra at the natural ¹⁸O level of *ca*. 0.2% (Figure 1). Here we report the first systematic study of such effects on ²⁹Si nuclear shielding in the series of organosilicon compounds.

The observed ${}^{1}\Delta^{18/16}O$ (²⁹Si) values (Table 1) are smaller than the analogous effects in ${}^{13}C$ n.m.r. spectra [for example, 35 p.p.b. in Me₃COH, 15 p.p.b. in C(OR)₄].⁶ This is in contrast with the wider range of chemical shifts and greater mass factor in the case of ²⁹Si, implying larger isotopic effects in ²⁹Si spectra.^{4,6}

This contradiction can be explained by at least two reasons. Firstly, this anomaly provides evidence of the difference in nature of Si–O and C–O chemical bonds, in agreement with the concept of d_{π} - p_{π} conjugation between the lone electron pairs of oxygen and the vacant d-orbitals of the silicon atom in organosilicon compounds.⁸ This is further supported by the fact that the diminishing d_{π} - p_{π} interaction (a rise in Si–O bond polarity) for Me₃SiOR derivatives in the series R = NR₂ > Alk > SiR₃ > Ph (caused by the increase in concurrent conjugation between the lone electron pairs of the oxygen atom and substituent R) results in a systematic increase in ¹ Δ $^{18/16}O(^{29}Si)$. Secondly, the values $^{1}\Delta$ $^{18/16}O(^{29}Si)$ exhibit a strong dependence on the nature of substituents at the silicon atom. An increase in their electronegativity causes a dramatic decrease in the $^{1}\Delta$ $^{18/16}O(^{29}Si)$ values. A parallel increase in

Table 1. ²⁹Si N.m.r. parameters of various organosilanes.^a

				δ (²⁹ Si)/
Ν	Compound	$^{1}\Delta$ $^{18/16}O$	$^{1}J(^{29}\text{Si}-^{13}\text{C})$	p.p.m.
1	Me ₃ SiOPh	28.5	59.74	18.8
2	Me ₃ SiOSiMe ₃ ^b	26.2	59.62	6.9
3	(Me ₃ SiO) ₂ SiMe ₂ ^c			
	SiMe ₃	25.6	59.70	6.7
	SiMe ₂	16.6	74.43	-21.3
4	Me ₃ SiOBu ^t	25.2	59.19	6.4
5	Me ₃ SiOMe ^d	23.1	59.06	17.9
6	Me ₃ SiONHSiMe ₃ ^{b,e}			
	OSi	21.8	59.47	20.9
	NSi		59.69	10.9
7	$(Me_2SiO)_4$	17.3	75.58	-19.6
8	Me ₂ Si(OMe) ₂ ^f	15.2	73.73	-1.7
9	MeSi(OMe) ₃ 9	7.5	97.15	-40.1
10	Si(OMe) ₄ ^h	4.0		-78.6
11	Si(OEt) ₄ ^{b,i}	4.6		-82.3

^{a 29}Si N.m.r. spectra were recorded at 71.55 MHz on a Bruker WM-360 spectrometer under ultrahigh resolution conditions as described earlier⁷ for 80% solutions in C₆D₆ at 308 K in 10 mm sample tubes. The isotope effects (¹Δ) are expressed in parts per billion (±0.1 p.p.b.). Positive value denotes an upfield shift for the nucleus bonded to the heavier isotope. Spin-spin couplings are in Hz (±0.01) and chemical shifts (δ) in p.p.m. (±0.1) relative to the internal standard Me₄Si. ^b Ref. 7. ^c2*J*(²⁹Si-²⁹Si) 1.32 Hz. ^d2*J*(²⁹Si-¹³C) 1.77 Hz. ^e ¹Δ(15¹⁴N) 14.2 p.p.b., 3J(²⁹Si-²⁹Si) 2.45 Hz. ^f2*J*(²⁹Si-¹³C) 1.10 Hz, ³*J*(²⁹Si-¹³C) 2.35 Hz.

Figure 1. A region of ± 2 Hz relative to the major resonance in the ultrahigh resolution ²⁹Si n.m.r. spectrum of Me₃SiOMe (with 20%, v/v, C₆D₆ in a 10 mm sample tube) acquired with the INEPT sequence and noise modulated broad-band proton decoupling on Bruker WM-360 spectrometer at 71.55 MHz and 303 K. ¹³C and ¹⁸O Satellites of the OMe group are visible. Number of scans 80, spectral width 300 Hz, acquisition time 27.3 s, 16 K data points acquired. The data were processed with 30 mHz Lorentzian narrowing plus GB = 0.4 and zero-filling into 128 K data points, which yielded a digital resolution of 4.5 mHz.

¹*J*(²⁹Si–¹³C) indicates that this may be due to the growth in s-character of the Si–O bond with increasing number of electronegative substituents at Si. At the same time enhanced shielding of the ²⁹Si nuclei in the same series suggests that the decrease in ¹ Δ can also be related to a greater positive charge on the silicon atom.⁹

It is noteworthy that ${}^{1\Delta}$ ${}^{18/16}O({}^{29}Si)$ tends to increase with lengthening of the Si–O bond in compounds with the same substituents at oxygen: Me₃SiOMe (1.639 Å 10), MeSi(OMe)₃ (1.632 Å 11), Si(OMe)₄ (1.613 Å 12).

Received, 2nd August 1988; Com. 8/03167C

References

- 1 J. M. Risley, S. A. DeFrees, and R. L. Van Etten, Org. Magn. Reson., 1983, 21, 28.
- 2 G. Rajendran, R. E. Santini, and R. L. Van Etten, J. Am. Chem. Soc., 1987, 109, 4357.
- 3 R. Iyengar, F. Eckstein, and P. A. Frey, J. Am. Chem. Soc., 1984, 106, 8309.
- 4 P. E. Hansen, Annu. Rep. NMR Spectrosc., 1983, 15, 105.
- 5 J. C. Vederas, Can. J. Chem., 1982, 60, 1637.
- 6 C. J. Jameson, J. Chem. Phys., 1984, 81, 4300.
- 7 E. Kupče and E. Lukevics, J. Magn. Reson., 1988, 80, 359.
- 8 H. Kwart and K. G. King, 'd-Orbitals in the Chemistry of Silicon, Phosphorus and Sulphur,' Springer-Verlag, Berlin, 1977.
- 9 D. B. Chesnut, Chem. Phys., 1986, 110, 415.
- 10 B. Csákvári, Z. Wagner, P. Gömöry, I. Hargittai, B. Rozsondai, and F. C. Miljhoff, Acta Chim. Acad. Sci. Hung., 1976, 90, 149.
- 11 E. Gergö, I. Hargittai, and G. Schultz, J. Organomet. Chem., 1976, 112, 29.
- 12 L. H. Boonstra, F. C. Miljhoff, G. Rens, and A. Spelbor, J. Mol. Struct., 1975, 28, 129.